

0017-9310(95)00093-3

Heat transfer enhancement in water–feldspar upflows through vertical annuli

TÜLAY A. ÖZBELGE and SEMA H. KÖKER

Department of Chemical Engineering, Middle East Technical University, Ankara 06531, Turkey

(Received 7 June 1994 and in final form 9 February 1995)

Abstract—Although there are many industrial applications of liquid-solid flows in technology, the available knowledge of heat transfer to or from such flows is limited. In this study the effects of parameters on the enhancement of heat transfer from water–feldspar slurries flowing turbulently upwards in vertical annuli were investigated and the experimental conditions beneficial to the enhancement of heat transfer were determined. It was found that the heat transfer enhancement in upflow of slurries through a vertical annulus was a function of Prandtl and flow Reynolds numbers, the ratio of equivalent diameter to particle diameter, the aspect ratio of the inner pipe diameter to the outer pipe diameter and the concentration of solid particles in the slurry.

INTRODUCTION

The subject of heat transfer in particulate flows became popular during the 1950s, when seeding the flow with micrometre-size solid particles was considered as a "heat transfer augmentation technique" [1, 2].

Enhancement or augmentation of heat transfer by introduction of solids into fluids offered many advantages to conventional cooling of nuclear reactors [1]. Since the same heat transfer rates could be achieved at lower system pressures, costs were reduced due to the smaller heat transfer area requirement and the lower cost of construction materials at the reduced pressures. The same technique was used to overcome the deficiencies of gases and liquids in using them as heat transfer media [3].

The heat transfer and flow characteristics of liquid– solid flows in horizontal and vertical pipes were investigated by several researchers [3–10]; however, liquid– solid and gas–solid flows in annuli were not studied adequately due to their complicated nature.

The relationship between the heat transfer enhancement due to the presence of solid particles and the fluid-solid interactions in horizontal and vertical pipe flows of suspensions was studied by several researchers; relatively recent investigations were made by Brandon and Thomas [5], Plass and Molerus [6] and Zisselmar and Molerus [11]. In all these studies, it was proved that in the viscous sublayer the strong mutual interaction between the fluid and solid phases increased the turbulent intensity, thus the solid particles enhanced the wall-to-suspension heat transfer by thinning the viscous sublayer. Brandon and Thomas [5] obtained a dimensionless grouping, $d_{\rm p}^* = (d_{\rm p}/D)(Re)^{11/16}$ and reported the occurrence of a peak heat transfer enhancement at a constant value of d_p^* which was found to be 4.4 for water–glass powder suspension flows. Özbelge [8] investigated the applicability of the model proposed by Brandon and Thomas [5] and concluded that a particular combination of particle size, pipe diameter, flow Reynolds number and solid concentration would determine the magnitude of the peak heat transfer enhancement in suspension flows, while its location was set by d_n^* in accordance with the interaction model [5]. Özbelge [8] further reported d_p^* as 4.2 for water-feldspar slurries flowing turbulently in horizontal pipes. This model has not yet been checked for liquid-solid flows in annuli and more research is needed to clarify the twophase heat transfer mechanism in a vertical annulus. The objective of the present study is to provide experimental data to be used in the design and modelling work.

EXPERIMENTAL

In the experimental investigation of heat transfer to or from liquid-solid flows in a vertical annulus, the chosen independent variables are particle size, solid concentration, flow Reynolds number and the aspect ratio, which is the ratio of the outside diameter of the inner pipe to the inside diameter of the outer pipe. The convective heat transfer coefficients, heat transfer enhancement ratio and the Nusselt numbers of suspension flows in the annulus have been determined.

Experimental set-up

The apparatus used in the experiments is shown in Fig. 1. It consists of two main lines, a hot slurry line and a cold water line. The slurry line forms a closed loop system which has the following items: a slurry pump, and a heat exchanger on the horizontal line to heat the slurry to the desired temperature with steam before entering the vertical annulus of 4.1 m in length.

NOMENCLATURE

- $A_{\rm f}$ flow area of annulus [m²]
- A_{ii} tube-side heat transfer area, $\pi D_{ii} L$ [m²]
- A_{io} annulus-side heat transfer area, πD_{io} $L [m^2]$
- C heat capacity [J kg⁻¹ K⁻¹]
- C_f solid concentration in the feed slurry [wt%]
- D pipe diameter [mm]
- $D_{\rm e}$ equivalent diameter of annulus [mm]
- $d_{\rm p}^{*}$ dimensionless grouping, $(d_{\rm p}/D)(Re)^{11/16}$
- $d_{\rm p}$ particle diameter [mm or μ m]
- D_{ii} inside diameter of inner pipe [mm]
- D_{io} outside diameter of inner pipe [mm]
- $D_{\rm oi}$ inside diameter of outer pipe [mm]
- h heat transfer coefficient [W m⁻² K⁻¹]
- k thermal conductivity $[W m^{-1} K^{-1}]$
- k_{Cu} thermal conductivity of copper tube [W m⁻¹ K⁻¹]
- L length of test section [m]
- \dot{m} mass flow rate [kg s⁻¹]
- Nu Nusselt number
- Pr Prandtl number
- q heat transfer rate [W]

- q_{Loss} rate of heat loss to surroundings [W]
- *Re* Reynolds number
- T temperature [°C]
- u velocity [m s⁻¹ or cm s⁻¹]
- $U_{\rm o}$ overall heat transfer coefficient
- X weight fraction of solids in slurry [kg kg^{-1}].

Greek symbols

- ΔT_{LM} logarithmic temperature difference [K]
- κ aspect ratio, D_{io}/D_{oi}
- μ viscosity [kg m⁻¹ s⁻¹]
- ρ density [kg m⁻³]
- Φ volume fraction of solids in suspension.

Subscripts

- p solid particle
- s suspension or slurry
- si slurry inlet
- so slurry outlet
- sw water in annulus side
- w water in tube side
- wi cooling water inlet to tube side
- wo cooling water outlet.

Fig. 1. Schematic of the experimental set-up.

Fig. 2. A schematic diagram of the flared mixing chamber.

The vertical test section is the 1.22 m section of the annulus. An entrance length of 1.57 m was provided from the bottom end of the annulus to the test section to ensure fully developed velocity and temperature profiles in the test section. The annulus has flared mixing chambers at both its ends, equipped with baffles to provide uniform flow of liquid-solid mixtures. A schematic diagram of the flared section is shown in Fig. 2.

The cold-water line consists of a constant-level tank with an overflow line to the drain and a centrifugal pump which forces the cooling water upwards in a vertical pipeline to the top of the annulus, then it flows downwards through the inner pipe of the annulus and again upwards in a hydraulic leg approximately 2 m long at the end of the annulus to prevent leakage of air into the system.

The slurry and cooling water flow rates were measured with previously calibrated orifice meters placed on the corresponding lines away from the elbows to avoid flow disturbances. Shielded iron-constantan thermocouples used to measure slurry temperatures extended into the annulus horizontally with their tips in-between the inner and outer pipes, while the thermocouples measuring water temperatures extended into the centre of the inner pipe. Utmost care was provided to avoid leakage between the annulus and the inner pipe, and to minimize the flow disturbance in the test section. Shielded iron-constantan thermocouples of surface type were used to measure the wall temperatures on the outside surface of the inner pipe and they were fixed by bolts-and-nuts arrangements on the outside surface of the outer pipe.

The solid particles used in heat transfer experiments were feldspar with the physical properties given in Table 1. Three batches of particles with different average diameters were prepared by using a series of Tyler standard sieves. Arithmetic average diameters between the sieves were taken as the average diameter for each batch of particles. In the experiments three concentric pipe-sets were used. The details for these pipe-sets are given in Table 2.

Experimental procedure

At the start of this work, the orifice meters were calibrated. The thermocouple calibrations were checked by using a temperature-controlled water bath and a thermometer accurate to $\pm 0.05^{\circ}$ C. This procedure was repeated at the beginning of experiments with each concentric pipe-set, then the thermocouples were placed into their positions carefully, and the system was insulated with fibre glass. The accuracy and

Material	ρ_{p} [kg m ⁻³]	d _p [mm]	$\begin{bmatrix} C_p \\ [J kg^{-1} K^{-1}] \end{bmatrix}$	$[W m^{-1} K^{-1}]$
Feldspar (K ₂ O · Al ₂ O ₃ · SiO ₂)	2500	0.072 0.127 0.191	836.8	1.09

Table 1. Physical properties of solids

Table 2. Characteristics of concentric pipe-sets

Pipe-set	Material of construction	D _{oi} [mm]	D _{io} [mm]	κ	A_{f} [m ²]	D _e [mm]
Ι	Outer pipe : galvanized iron Inner pipe : copper	52	16	0.308	1.923×10^{-3}	36
II	Outer pipe : galvanized iron Inner pipe : copper	52	22	0.423	1.744×10^{-3}	30
III	Outer pipe : galvanized iron Inner pipe : copper	52	28	0.538	1.508×10^{-3}	24

the reproducibility of the results were tested in several runs with water only. The hot water flowing upwards in the annulus was cooled by cold water countercurrently. Thus, the heat transfer coefficients of a single phase, namely of water in the annulus, were determined according to the calculation procedure given in this paper, and they were compared with the heat transfer correlation given by Petukhov and Roizen [12]. In addition to this, some of the runs were repeated at almost the same operating conditions to check the reproducibility. Afterwards, the experiments with solid particles in water were started. The scope of these experiments are given in Table 3. The general experimental procedure consisted of the following steps.

(1) The slurry side of the system was filled with water and the pump was started. The slurry of required concentration with a uniform particle size was prepared by dumping the necessary amount of solids into the head tank, since the volume of the system and the density of solids were measured previously. The liquid level in the head tank was checked to be at the marked level.

(2) The flow rates of the slurry and the cooling water were set at the desired values.

(3) The slurry was heated with steam to a temperature within a range of $40-65^{\circ}$ C in the horizontal heat exchanger, then it entered the vertical annulus from the bottom. At each aspect ratio, and each slurry velocity, the flow rate of the cooling water was so

adjusted that a reasonable temperature difference for each stream was obtained between the inlet and the outlet of the test section. Thus, the experimental error in the thermocouple measurements was minimized and an almost linear temperature variation in each stream along the overall length of the vertical annulus was provided.

(4) Actual data were recorded within 10 min after the system reached the steady state, which required approximately an hour or more. At the steady state, slurry and cooling water temperatures at the inlet and outlet of the overall length of the vertical annulus and of the test section, the wall temperatures and the pressure differentials of the orifice meters were recorded.

(5) Transport concentration of solids in the flowing slurry was determined with a gravimetric technique after obtaining a sample of slurry from the sampling line on the annulus when the steady state was reached in each run. Further details of the experimental work are given elsewhere [13].

(6) At the end of the day of experimentation, the solids were washed out of the system and the pumps were turned off.

Calculation procedure

The heat flow rate from the hot slurry to the cold water in the test section is given by the following equation:

$$q_{\rm s} = \dot{m}_{\rm s} C_{\rm s} (T_{\rm si} - T_{\rm so}). \tag{1}$$

Feed slurry concentration, $C_{\rm f}$ [wt%]	0.75	$< C_{\rm f}$	<2.5
Solid particle size, d_p [mm]	0.072	$< d_{\rm p}$	< 0.191
Slurry Reynolds number, Res	15 500	$< \dot{R}e_s$	< 55 500
Slurry velocity in annulus, u_s [m s ⁻¹]	0.248	$< u_s$	<1.25
Aspect ratio, κ	0.308	<κ	< 0.538

Table 5. Scope of the heat transfer experiment	Table	3.	Scope	of	the	heat	transfer	experiment
--	-------	----	-------	----	-----	------	----------	------------

The rate of heat transfer to the cooling water in the test section is equal to:

$$q_{\rm w} = \dot{m}_{\rm w} C_{\rm w} (T_{\rm wo} - T_{\rm wi}). \tag{2}$$

The net rate of heat transfer through the wall to the cooling water can be calculated as follows:

$$q_{\rm s} - q_{\rm Loss} = q_{\rm w} = U_{\rm o} A_{\rm io} \Delta T_{\rm LM} \tag{3}$$

where

$$U_{\rm o}A_{\rm io} = \left\{\frac{1}{h_{\rm w}\pi D_{\rm ii}L} + \frac{\ln(D_{\rm io}/D_{\rm ii})}{2\pi L k_{\rm Cu}} + \frac{1}{h_{\rm s}\pi D_{\rm io}L}\right\}^{-1}$$

and

$$\Delta T_{\rm LM} = \frac{(T_{\rm si} - T_{\rm wo}) - (T_{\rm so} - T_{\rm wi})}{\ln \{(T_{\rm si} - T_{\rm wo})/(T_{\rm so} - T_{\rm wi})\}}$$
(5)

$$A_{\rm io} = \pi D_{\rm io} L. \tag{6}$$

For the calculation of tube-side heat transfer coefficient for the cooling water, h_w , Sieder and Tate's equation [14] was used:

$$(h_{\rm w}D_{\rm ii}/k_{\rm w}) = 0.023 (D_{\rm ii}u_{\rm w}\rho_{\rm w}/\mu_{\rm w})^{0.8} \times (C_{\rm w}\mu_{\rm w}/k_{\rm w})^{1/3} (\mu_{\rm w}/\mu_{\rm wall})^{0.14}$$
(7)

where the physical properties of water were calculated at the bulk mean temperature of the cooling water in the tube side of the test section. The individual heat transfer coefficients of liquid-solid flows, h_s , were calculated using equations (2)–(7).

The physical properties of dilute liquid-solid suspensions at the bulk mean annular-side temperatures were obtained by the modifications of water properties for the presence of solids according to their concentrations. The volume-averaged density and the weight-averaged heat capacity were calculated from the following equations:

$$\rho_{\rm s} = \rho_{\rm sw}(1-\Phi) + \rho_{\rm p}\Phi \tag{8}$$

$$C_{\rm s} = C_{\rm sw}(1-X) + C_{\rm p}X$$
 (9)

where X and Φ are the mass and the volume fractions of the solids in the suspension, respectively.

The following equations recommended in the literature [3, 15] were used for the calculation of the suspension viscosity and thermal conductivity, respectively:

$$\mu_{\rm s} = \mu_{\rm sw} (1 + 2.5\Phi + 7.17\Phi^2 + 16.2\Phi^3)$$
(10)

$$k_{\rm s} = k_{\rm sw} \left(\frac{2k_{\rm sw} + k_{\rm p} - 2\Phi(k_{\rm sw} - k_{\rm p})}{2k_{\rm sw} + k_{\rm p} + \Phi(k_{\rm sw} - k_{\rm p})} \right).$$
(11)

For the thermal conductivity of the copper tube, k_{Cu} , a value of 379 W m⁻¹°C⁻¹ was used [13]. The dimensionless numbers for liquid-solid flows in the annulus were defined as follows:

$$Nu_{\rm s} = h_{\rm s}D_{\rm e}/k_{\rm s} \quad Pr_{\rm s} = C_{\rm s}\mu_{\rm s}/k_{\rm s} \quad Re_{\rm s} = D_{\rm e}u_{\rm s}\rho_{\rm s}/\mu_{\rm s}.$$
(12)

RESULTS AND DISCUSSION

Several experiments were performed with hot-water flow without solids in the annulus cooled by coldwater flow in the tube side to check the accuracy of the experimental system. The experimental Nusselt numbers for the water flow in the annulus were calculated using equations (2)–(7) and (14). The theoretical Nusselt number, Nu_{sw} , for each experiment was also calculated from the correlation by Petukhov and Roizen [12], which is given for a single-phase annular flow as follows :

$$Nu_{sw} = \frac{(f/8)(Re_{sw} - 1000)Pr_{sw}(0.86)\kappa^{-0.16}}{(1 + 12.7(\sqrt{f/8})(Pr_{sw}^{2/3} - 1))}$$
(13)

where

(4)

$$Nu_{sw} = h_{sw}D_e/k_{sw} \quad Pr_{sw} = C_{sw}\mu_{sw}/k_{sw}$$
$$Re_{sw} = D_e u_{sw}\rho_{sw}/\mu_{sw}$$
(14)

$$f = (1.82 \log_{10} Re_{\rm sw} - 1.64)^{-2}.$$
 (15)

The subscript sw was used for water flow in the annulus without solids; Re_{sw} and Pr_{sw} were calculated using the properties of water at the bulk-mean water temperature in the annulus. It was observed that the discrepancies between the experimental Nu_{sw} values and those from the correlation [12] were less than 9%. This cumulative error included the inaccuracies due to the use of Sieder and Tate's [14] correlation to calculate the tube-side heat transfer coefficients, the possible experimental errors such as heat loss, temperature and flow rate measurements and the inaccuracy of the Petukhov and Roizen [12] correlation. The heat loss was around 1%. The effect of entrance length was not important since the L/D_e ratio was changed between 78 and 116 in the range of experiments. The reproducibility of the repeated runs performed with the slurry flow in the annulus was around 10%. Considering the experimental difficulties experienced with the particulate flows, these results should be acceptable.

The individual heat transfer coefficients of liquidsolid flows, $h_{\rm s}$, at different operating conditions calculated from the experimental data given in Table 4 using equations (2)-(7) were plotted with respect to the slurry Reynolds numbers for each particle size and for each aspect ratio, taking the solid concentration as a parameter (Figs. 3-11). The individual heat transfer coefficients for water flow in the annulus, h_{sw} , calculated from equations (13)-(15), were also plotted with respect to the Re_{sw} values in Figs. 3-11 and a straight line for each aspect ratio (κ) was obtained to be used as a reference for the determination of enhancement in the slurry heat transfer coefficient, if any, by the addition of solid particles to water. It has to be noted that the ranges of the Reynolds and Prandtl numbers in the experiments performed in the annuli with different aspect ratios were not the same,

	$h_{\rm s}/h_{\rm sw}$		1.1/	1.12	130	1 48	217	121	12.1	111	111	116	1.34		1.18	1.00	1.20	1.38	1.33	1.28	1.25	1.49	1.00	1.22	1.25	1.32		111	1.00	1.27	1.57	1.23	1.05	1.11	1.44	1.45	1.17	1.25	1.26
	h_{s} [W m ⁻² K ⁻¹]		C0/2	1066	5863	3497	2/10	4641	101	6656	1864	4369	5946		2797	3516	4595	6340	3167	4485	4897	6801	2297	4227	4868	5992		2670	3547	4955	7245	2753	3517	4177	6514	3155	3852	4594	5683
	$Nu_{\rm s}$		7C1	017	375	197	733	256 256	202	775 143	515	217	329		155	195	254	351	175	248	270	377	126	233	268	331		147	196	274	401	152	195	231	361	175	213	254	315
	Pr_{s}		5.08 17 5	12.6	17.5 92.5	5 1 C	41.6	77.6	3.70	3 17	3.70	07.5 02.5	3.39		3.17	3.20	3.19	3.29	3.13	3.24	3.23	3.35	3.23	3.22	3.21	3.36		2.97	3.16	3.18	3.22	3.22	3.33	3.24	3.33	3.40	3.44	3.36	3.35
	$Re_{\rm s}$	$16)(1.22) \text{ m}^2$	24 430 26 070	016.05	54 580	24 019	10 47	000 00 41 835	907 75	074 40	26 424	41 224	52 138)16)(1.22) m ²	23 846	36 837	42 034	54 551	23 972	36 434	41 358	53 416	22 933	36 506	41 083	52 751	016)(1.22) m ²	24 857	37 611	42 338	55 624	23 336	35 560	41 273	53 712	22 434	34 024	39 432	52 945
lated results	$\begin{bmatrix} h_{w} \\ W \\ m^{-2} \\ K^{-1} \end{bmatrix}$	2) m ² , $A_{\rm io} = \pi (0.0$	9668	9/ 41 0588	9673	0602	2007	90/4	0601	9548	07270	9675	9558	(2) m ² . $A_{12} = \pi(0.0)$	9530	9613	9244	9294	9658	9762	9487	9483	9663	9758	9623	9573	22) m ² . $A_{\rm b} = \pi(0.6)$	9807	9616	9293	8988	9567	9724	9579	9602	9555	9627	9493	9607
and calcu	Pr_{*}	(0.014)(1.2	6.06 5 07	20.0	5.67	5.03 73	(7.0 Y 04	40.0 2 80	(0.0 (L) V	57.5 6.78	07.0	573	5.72	0.014)(1.2	6.21	6.04	5.85	5.72	6.14	5.89	5.93	5.87	6.06	5.83	5.72	5.71	c(0.014)(1.2	5 91	5.92	5.82	5.59	6.14	5.89	5.76	5.69	6.07	5.98	5.82	5.67
erimental data	Re_{w}	$\min, A_0 = \pi$	40.914	42 049	41 461	40.129	41 212	917 14	11 972	39,664	100 17	41 774	41 824	e mm $A_{ii} = \pi$	39,902	40 895	39 449	40 207	40 618	42 117	40 584	40 908	41 074	42 345	41 775	41 924	6 mm . $A_{\text{s}} = \pi$	41 857	41 113	39.584	38 763	40 463	42 068	41 679	42 071	40 917	41 541	41 290	42 172
ble 4. Expe	T_{w_0}	$38, D_{e} = 36$	21.U2	20.40 20.20	30.05	26.00	77.50	25.90	20.00	25.75	78 20	36.02	29.75	08 D = 3	26.20	27.35	28.85	29.95	26.65	28.45	28.30	28.90	26.80	28.65	29.65	29.85	$08, D_2 = 3$	28.05	28.10	29.30	31.40	26.35	28.10	29.35	30.15	26.80	27.65	28.90	30.15
Ta	T_{w_i} [°C]	m, $\kappa = 0.30$	24.55	00.40	26.50	73.50		24.40 25.20	07.07	23.30	05.00	26.10	26.45	m = 0.3	23.70	31.55	25.50	26.20	23.90	25.30	24.90	25.10	24.80	25.65	26.35	26.50	$m. \kappa = 0.3$	25 50	25.20	25.55	27.20	24.00	25.60	26.40	26.55	24.50	25.15	26.00	26.90
	$^{T_{\rm so}}_{\rm [°C]}$	$d_{\rm p} = 72 \ \mu$	57.60 55.00	06.00 55 05	54.65	00.13	07.10	56.05	00.00	57.30	20.72	56.10	52.85	$d = 127 \mu$	56.45	55 50	55.70	54.45	57.00	55.55	55.25	53.50	55.35	55.40	55.75	53.15	$d_{r} = 191 t$	20 00	57.20	56.95	56.20	55.20	53.80	55.40	53.90	52.20	51.75	52.90	53.50
	$T_{\rm s}$		59.20	21.75	55 60	58 90	06.00	20.00	C7.1C	58 QD	5115	50.05	53.75		58.15	56.65	56.85	55.40	58.80	56.85	56.45	54.50	56.70	56.70	56.95	54.10		61 70	58.40	58.20	57.20	56.80	54.85	56.45	54.90	53.70	52.80	53.95	54.40
-	$\dot{m}_{ m s}$ [kg s ⁻¹]		0.6310	1.1224	1.1224	0.6310	0100.0	0.9914	1071.1	0.6310	01000	1 1 2 3 4	1.4975		0.6310	0.9830	1.1234	1.4975	0.6310	0.9914	1.1234	1.4975	0.6310	0.9914	1.1234	1.4975		0 6230	0.9914	1 1734	1.4975	0.6310	0.9914	1.1234	1.4975	0.6470	0.9914	1.1234	1.4975
	\dot{m}_{w} [kg s ⁻¹]		0.396	0.295	0.202	0 200	0.200	0.296	1000	0.306	202.0	0.285	0.385		0.395	1 395	0.370	0.370	0.398	0.398	0.385	0.385	0.398	0.396	0.385	0.385		905 0	0.390	0 363	0.350	0 396	0.398	0.385	0.385	0.396	0.398	0.385	0.385
	Cf [wt%]		0.75	C/-0	0.75	1.25	C7.1	27.1	77.1	2.1 2.50	02.2	05.2	2.50		0.75	0.75	0.75	0.75	1.25	1.25	1.25	1.25	2.50	2.50	2.50	2.50		0.75	0.75	0.75	0.75	1 25	1.25	1.25	1.25	2.50	2.50	2.50	2.50

140

T. A. ÖZBELGE and S. H. KÖKER

	1.23	1.00	1.00	1.10	1.04	1.06	1.00	1.18	1.11	1.00	1.14		1.0.1	10.1	1 00	1.00	1.05	1.00	1.12	1.15	1.10	1.00	1.07	1.20		1.13	1.00	1.00	1.05	1.09	1.00	1.00	1.12	1.11	1.11	1.00	1.00	tinued overleaf.)
	2992	3470	4414	5298	2461	3893	3907	5507	2720	3697	5462		LV12	2410	0020		2533	3532	4408	5488	2660	3447	4237	5657		2773	3486	3999	4982	2648	3393	3583	5252	2498	3893	3999	4678	(Cor
	138	160	204	245	113	180	181	256	125	170	252		146	140	101	177	117	163	204	254	122	159	195	262		128	161	185	228	123	157	166	244	116	180	184	216	
	3.29	3.34	3.35	3.36	3.28	3.36	3.36	3.54	3.22	3.15	3.42		<i>LE C</i>	10.0	10.0		3.24	3.34	3.38	3.40	3.20	3.30	3.36	3.47		3.26	3.33	3.34	3.42	3.21	3.35	3.36	3.50	3.48	3.46	3.39	3.45	
0.022)(1.22) m ²	21 208	32 738	36 831	48 836	21 041	32 368	36 676	46 677	21 412	34 043	47 516	(0.022)(1.22) m ²	111 (77:1)(77:0)	100 10	004-00 201-114	4/ /90	21 316	32 254	36 524	48 344	21 534	32 483	36 263	47 012	(0.022)(1.22) m ²	21 551	32 692	37 035	47 922	21 456	32 477	36 746	47 190	196 61	31 304	35 926	47 346	
$m^{2}, A_{\rm ho} = \pi($	5380	5363	5391	5218	5313	5359	5196	4949	5358	5454	5089	$0, m^2 = 4 \pi$		4700 1013	1/10	0/10	5408	5457	5093	5012	5374	5433	5142	5068	() $m^2, A_{i,0} = \pi$	5356	5375	5164	5062	5322	5360	5166	5033	5261	5313	5179	5074	
π(0.020)(1.22	6.29	6.17	5.98	5.83	6.23	6.06	5.92	6.06	6.09	5.94	5.79	#(0.020)/1.23	77.1.V.V.2.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V	0.19	0.17 6.00	60.0	6.12	6.02	6.16	6.01	6.11	5.89	6.03	5.91	$\pi(0.020)(1.22)$	6.12	6.01	5.96	5.91	6.20	6.06	5.95	5.96	6.31	6.13	5.96	5.78	
$0 \text{ mm}, A_{\rm h} = \tau$	30 538	30 757	31 325	30 478	30 133	30,900	$30\ 060$	28 205	30 674	31 802	29 618	30 mm 4. –	- "P 110	50 410 20 410	20 140	64/ 67	30 962	31 715	28 871	28 658	30 727	31 719	29 426	29 319	$30 \text{ mm}, A_{\parallel} =$	30,603	31 126	29 694	29 263	30 265	30 866	29 763	28 937	29840	30 570	29 855	29 558	
23, $D_{\rm e} = 3$	25.75	26.55	27.65	28.95	25.95	27.20	28.10	27.40	26.90	27.90	29.25	. – U 201		20.02	20.02	CI.12	26.65	27.40	26.80	27.85	26.75	28.15	27.55	28.40	123, <i>D</i> , =	26.70	27.50	27.85	28.35	26.20	27.10	27.85	27.95	25.35	26.70	27.80	29.15	
$n, \kappa = 0.4$	23.20	23.85	24.95	25.70	23.65	24.35	25.25	24.25	24.40	25.15	26.05	m + - 0 /		02.62	21.10	24.10	24.30	24.75	23.65	24.45	24.30	25.50	24.50	25.20	$m, \kappa = 0.4$	24.20	24.80	24.90	25.25	23.80	24.45	25.10	24.85	23.25	24.15	24.95	26.20	
$d_{\rm b} = 72 \ \mu$	54.00	53.55	53.50	53.30	54.00	53.20	53.20	50.20	55.20	53.90	52.30	4 - 122 h	цр — 14/ р	c0.50	01.60	04.10	54.90	53.40	52.85	52.50	55.00	54.10	53.20	51.30	$d_{\rm n} = 191 \ \mu$	54.70	53.80	53.45	51.95	54.00	53.40	53.30	51.00	50.85	51.35	52.60	52.15	
	55.90	54.80	54.55	54.20	55.65	54.50	54.30	51.05	56.95	55.15	53.20			C2.4C	04.20	C7.7C	56.60	54.65	54.05	53.45	56.75	55.30	54.30	52.20		56.45	55.05	54.55	52.80	55.70	54.60	54.35	51.85	52.35	52.50	53.70	52.95	
	0.6310	0.9914	1.1176	1.4880	0.6310	0.9914	1.1234	1.4975	0.6390	0.9914	1.4975		00000	0.96.0	9111.1 1 1075	C/ 64.1	0.6310	0.9830	1.1234	1.4975	0.6390	0.9914	1.1234	1.5020		0.6390	0.9830	1.1234	1.5040	0.6310	0.9914	1.1234	1.4975	0.6390	0.9970	1.1234	1.4975	
	0.436	0.432	0.428	0.407	0.427	0.427	0.407	0.390	0.426	0.432	0.393		0.120	0.428	0.413	0.415	0.432	0.436	0.405	0.393	0.428	0.428	0.405	0.396		0.427	0.427	0.405	0.395	0.427	0.427	0.405	0.395	0.428	0.427	0.407	0.392	
	0.75	0.75	0.75	0.75	1.25	1.25	1.25	1.25	2.50	2.50	2.50			c/.0 22.0	c/.0	C/.0	0.75	1.25	1.25	1.25	1.25	2.50	2.50	2.50		0.75	0.75	0.75	0.75	1.25	1.25	1.25	1.25	2.50	2.50	2.50	2.50	

Heat transfer enhancement in water-feldspar upflows

	h _s /h _{sw}		1.40	1.19	1.07	1.21	1.52	1.21	1.18	1.24	1.86	1.12	1.18	1.29		1.55	111	1.02	1.12	1.40	1.00	1.11	1.19	1.48	1.22	1.06	1.18		1.71	1.18	1.07	1.04	1.70	1.22	1.26	1.15	1.83	1.46	1.51	1.12
	${h_{\rm s} \over [{\rm W} {\rm m}^{-2} {\rm K}^{-1}]}$		3100	4665	4/23	6651	3359	4813	5132	0699	3666	4264	5021	6865		3447	4447	4723	1609	3016	3939	4842	6426	2583	4661	4559	6330		3709	4500	4636	5639	3220	4611	5397	6218	3123	5750	6776	6245
	Nu_s		116	1/6	1/9	253	125	181	193	255	137	160	189	261		129	167	178	232	113	149	184	244	97	175	172	240		139	170	176	215	121	174	204	236	118	216	254	236
	Pr_{s}		3.72	4.00	4.14	4.35	3.71	3.95	4.07	4.38	3.92	4.03	4.17	4.51		3.79	3.96	4.01	4.35	3.77	4.05	4.18	4.41	4.16	4.05	4.15	4.34		3.81	4.05	4.17	4.40	4.03	4.04	4.17	4.35	4.15	3.91	3.97	4.22
	$Re_{ m s}$)28)(1.22) m ²	17 466	79/ 57	28 420	560 95	17 431	25 926	28 710	35 719	16360	25 146	27 692	34 336	028)(1.22) m ²	17 214	26 013	29 225	36 095	17 155	25 378	28 180	35 514	15 553	25 017	27 861	35 521	028)(1.22) m ²	17 135	25 500	28 218	35 727	16 187	25 385	28 095	35 877	15 575	25 860	29 091	36 459
	$\lim_{m^{-2}}^{h_{w}} K^{-1}$]	() m^2 , $A_{\mathrm{io}} = \pi (0.0)$	4120	6778	4308	4436	4122	4245	4350	4446	4057	4212	4316	4412	2) m ² , $A_{i,c} = \pi(0)$	4082	4228	4314	4428	4103	4215	4307	4379	4022	4211	4324	4450	2) m ² , $A_{\rm in} = \pi(0.1)$	4064	4207	4315	4414	4032	4216	4298	4437	4050	4304	4252	4512
ontinued	Pr_{w}	(0.026)(1.22	$\frac{7.09}{2}$	60.7	61.7	7.19	7.09	7.02	7.04	7.13	7.29	7.15	7.15	7.23	r(0.026)(1.2	7.23	7.11	7.18	7.22	7.15	7.12	7.25	7.38	7.30	7.13	7.15	7.13	r(0.026)(1.2	7.28	7.16	7.17	7.27	7.29	7.12	7.24	7.19	7.16	6.83	7.68	6.93
Table 4. Co	Re_w	mm, $A_{ m ii} = \pi$	29 424	30 688 21 422	31 423 22 819	52 819	29 431	30 993	32 050	33 074	28 737	30 491	31 615	32 689	mm, $A_{\rm ii} = \tau$	28 960	30 649	31 489	32 720	29 206	30 610	31 084	32 322	28 663	30 550	31 632	33 072	$mm, A_{ii} = \tau$	29014	30 431	31 518	32 514	28 960	30 611	31 295	32 823	29 185	31 723	29 271	33 908
	$^{T_{wo}}_{[^{\circ}C]}$	$38, D_e - 24$	21.00	CU.12	20.02	00.02	21.05	21.45	21.30	20.75	20.10	20.75	20.70	20.25	538, $D_{s} = 24$	20.40	21.00	20.55	20.35	20.65	20.85	20.05	19.85	19.75	20.85	20.70	20.75	538, $D_{\rm e} = 24$	20.50	20.60	20.55	20.05	20.25	20.90	20.35	20.45	20.40	22.40	22.35	21.75
	Γ_{w} [°C]	m, $\kappa = 0.5$	19.00	C6.81	10.25	CC.81	18.95	19.30	19.25	18.85	18.05	18.75	18.75	18.45	$m, \kappa = 0.5$	18.30	18.90	18.60	18.45	18.70	18.95	18.05	17.95	18.25	18.80	18.80	18.85	$m, \kappa = 0.5$	18.35	18.55	18.65	18.25	18.45	18.85	18.30	18.55	18.75	20.10	20.05	19.80
	$_{[^{\circ}C]}^{T_{so}}$	$d_{\rm p} = 72 \ \mu$	46.75	67.54 31.64	47.10 01.00	0/.65	46.90	44.30	43.05	39.40	44.30	43.35	41.70	37.80	$d_{\rm m} = 127 \mu$	46.00	44.30	42.20	39.80	46.30	43.30	42.00	39.00	41.60	43.10	42.10	39.80	$d_{\rm b} = 191 \ \mu$	45.75	43.30	41.80	39.15	43.20	43.25	41.75	39.70	41.75	44.75	44.30	41.25
	$T_{\rm si}^{\rm CC}$		48.75	C1.C4	45.55	40.65	49.00	45.80	44.30	40.30	46.40	44.90	42.90	38.70		48.10	45.70	43.40	40.70	48.20	44.60	43.20	39.90	43.15	44.50	43.30	40.75		47.85	44.60	43.00	40.00	45.00	44.65	43.00	40.60	43.45	46.30	45.70	42.20
	<i>ṁ</i> _s [kg s ⁻¹]		0.6310	4166.0	1.1200	C/64.1	0.6310	0.9914	1.1280	1.4975	0.6310	0.9914	1.1280	1.4975		0.6310	0.9914	1.1280	1.4975	0.6310	0.9914	1.1280	1.4975	0.6310	0.9914	1.1280	1.4975		0.6310	0.9914	1.1280	1.4975	0.6310	0.9914	1.1280	1.4975	0.6310	0.9914	1.1280	1.4975
	<i>т</i> _w [kg s ⁻¹]		0.608	0.034	0000	0.080	0.608	0.634	0.658	0.686	0.608	0.634	0.658	0.686		0.608	0.634	0.658	0.686	0.608	0.634	0.658	0.686	0.608	0.634	0.658	0.686		0.608	0.634	0.658	0.686	0.608	0.634	0.658	0.686	0.608	0.634	0.658	0.686
	C _f [wt%]		0.75	C/.U	C/.0	c/.0	1.25	1.25	1.25	1.25	2.50	2.50	2.50	2.50		0.75	0.75	0.75	0.75	1.25	1.25	1.25	1.25	2.50	2.50	2.50	2.50		0.75	0.75	0.75	0.75	1.25	1.25	1.25	1.25	2.50	2.50	2.50	2.50

T. A. ÖZBELGE and S. H. KÖKER

Fig. 3. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.308$ and $d_p = 72 \ \mu m$.

which caused shifts in these reference lines. The approximate ranges of Reynolds and Prandtl numbers for each aspect ratio are:

 $Re_{\rm s} = 23\ 000-55\ 000\ ;$ $Pr_{\rm s} = 3.08-3.40$ for $\kappa = 0.308$ $Re_{\rm s} = 21\ 000-48\ 500\ ;$ $Pr_{\rm s} = 3.15-3.50$ for $\kappa = 0.423$ $Re_{\rm s} = 17\ 500-36\ 000\ ;$ $Pr_{\rm s} = 3.71-4.50$

for $\kappa = 0.538$.

The most important factors affecting the heat transfer mechanism in particulate flows were explained in the literature by Tien [16], Boothroyd [2], Depew [17] and Danziger [18] as boundary-layer thinning, wallcontact heat transfer and the reduced eddy diffusivity at the wall. Additionally, the importance of radial concentration distribution of solid particles on the heat transfer mechanism was emphasized by Furuta *et al.* [19] and Konno *et al.* [7]. Based on the information in the literature, the results of this study can be analysed as follows.

Figures 3-11 generally show that the slurry heat

Fig. 4. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.308$ and $d_p = 127 \ \mu m$.

transfer coefficient increases with the Reynolds number, however almost every curve exhibits a minimum vertical distance to its reference line of ' h_{sw} vs Re_{sw} ' at an intermediate Reynolds number indicating a minimum enhancement ratio (h_s/h_{sw}). In this range of the Reynolds number, h_s values may become even lower than h_{sw} values in some cases (see Figs. 6–8).

Increasing the Reynolds number to the intermediate values (e.g. 25 000–40 000) has a negative effect on the enhancement of heat transfer to or from liquid– solid flows due to the acquisition of high momentum by particles in the direction of flow, and prevention of their lateral motion, which contributes to the thinning of the viscous boundary layer. This effect is compensated by the increasing concentration of solids; therefore up to the intermediate Reynolds numbers, the heat transfer enhancement may decrease, but at higher Reynolds numbers the interaction between high-intensity eddies and the particles at high concentrations may create favourable patterns for better heat transfer.

Semilogarithmic plots of h_s vs Re_s in Figs. 6–8 and Figs. 10 and 11 show similar trends where the positive effects of low solid concentration at low Reynolds numbers (e.g. 15 000–20 000) and of high solid con-

Fig. 5. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.308$ and $d_p = 191 \ \mu m$.

centration at high Reynolds numbers (e.g. 45 000-55 000) on heat transfer enhancement can be observed. The curves diverge from each other at low Reynolds numbers indicating that the increasing solid concentration is not beneficial to the heat transfer enhancement due to the limited freedom of particles in the lateral direction to thin the boundary layer and the increased effective viscosity of the suspension [2, 19]. The divergence of h_s vs Re_s curves from each other at low Reynolds numbers may be related to the magnitude of the agitation created by the particleparticle and the particle-wall interactions which in turn depend on the combined effects of particle size, width of annular gap, solid concentration, scale and intensity of turbulence. As the Reynolds number increases, although the effect of solid concentration on h_s is dominated by the effect of high turbulence, the favourable effect of high solid concentration (2.5 wt%) over those of other concentrations (0.75 and 1.25 wt%) can still be observed; because at high solid concentrations, wall-contact of the particles will be beneficial to the heat transfer mechanism only if the particle residence time at the wall is short and the particle-wall collision rate is large [2].

In Figs. 3-5 and 9 the beneficial effect of low solid

Fig. 6. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.423$ and $d_p = 72 \ \mu m$.

concentration on $h_{\rm c}$ at low Reynolds numbers cannot be observed in water-feldspar flows through the largest annular gap ($D_e = 36$ mm) regardless of the particle size, or in those carrying the smallest particles $(d_p = 72 \ \mu m)$ through the smallest annular gap $(D_e = 24 \text{ mm})$. As can be observed in Figs. 3 and 4, the intermediate concentration (1.25 wt%) of small and medium size particles (72 and 127 μ m) seems to provide a favourable flow behaviour for the heat transfer enhancement, which is reasonable, because in turbulent liquid-solid flows, the small particles will tend to follow the eddies and the two-phase mixture will behave roughly like a homogeneous liquid [2]. Therefore at low solid concentrations of small particles, particle-wall interactions will not be significant. As the solid concentration increases, the increased effective viscosity of homogeneous waterfeldspar mixture will reduce the heat transfer rate; however, the intermediate concentrations of small particles may create particle-wall interactions [20] at a high level to enhance the rate of heat transfer (Figs. 3 and 4).

In Figs. 5 and 9, it seems that the behaviour of the largest particles (191 μ m) in the largest annular gap ($D_e = 36$ mm) is similar to that of the smallest par-

Fig. 7. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.423$ and $d_p = 127 \ \mu m$.

Fig. 8. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.423$ and $d_p = 191 \ \mu m$.

Fig. 9. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.538$ and $d_p = 72 \ \mu m$.

Fig. 10. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.538$ and $d_p = 127 \ \mu m$.

Fig. 11. Plot of h_s vs Re_s with C_f as a parameter for $\kappa = 0.538$ and $d_p = 191 \ \mu m$.

ticles (72 μ m) in the smallest annular gap ($D_e = 24$ mm). In both of these cases, 2.5 wt% solid concentration yields higher heat transfer coefficients, h_s , and higher enhancement ratios (h_s/h_w) than those given by the other concentrations (0.75 and 1.25 wt%) at low Reynolds numbers. This can be explained again by the combined effects of particle–wall, particle–eddy interactions represented roughly by the D_e/d_p ratio and the solid concentration.

CONCLUSION

It is clear that the dependence of heat transfer enhancement on the experimental parameters is quite complex. The combined effects of particle size, width of annular gap, D_e/d_p ratio, solid concentration in the slurry, Prandtl and flow Reynolds numbers determine the percentage enhancement in heat transfer to or from the turbulent water-feldspar upflows through vertical annuli. In order to give more comprehensive explanations for the mechanism of enhancement in heat transfer, additional experimental data is needed.

REFERENCES

- 1. D. C. Schlüderberg, Gas suspension coolants for large nuclear reactors, *Part 1 of First Day Proceedings of Conference on Dust Cooling*, Queen Mary College, London (1964).
- 2. R. G. Boothroyd, *Flowing Gas-Solids Suspensions* (1st Edn), Chap. 7. Chapman & Hall, London (1971).
- 3. V. J. Kofanov, Heat transfer and hydraulic resistance in flowing liquid suspension in pipes, *Int. Chem. Engng* 4, 426–430 (1964).
- J. J. Salamone and M. Newman, Water suspensions of solids, *Ind. Engng Chem.* 47, 283–288 (1955).
- C. A. Brandon and D. G. Thomas, Transport characteristics of suspensions, *Proceedings of the Fourth International Heat Transfer Conference*, Paper CT-2.1, Paris (1970).
- L. Plass and O. Molerus, Simultane wärmeübergangsund druck verlustmessungen an feststoff/flüssigkeits-suspensionen im übergangsbereich vom homogenen zum heterogenen suspensions-transport, *Chemie-Ingr-Tech.* 46, 355–356 (1974).
- H. Konno, E. Harada, M. Toda, M. Kuriyama and S. Saruta, Heat transfer characteristics of solid-liquid upward flow through vertical pipes, *Kagaku Kogaku Ronbunshu* 6, 308-311 (1980).
- T. A. Özbelge, The location of peak heat transfer enhancement in suspension flows, *Int. J. Multiphase Flow* 19, 535–538 (1993).
- E. Harada, M. Toda, M. Kuriyama and H. Konno, Heat transfer between wall and solid-water suspension flow in horizontal pipes, *J. Chem. Engng Japan* 18, 33-38 (1985).
- C. J. Park, K. O. Choj and D. S. Doh, An experimental and theoretical study on the augmentation of heat transfer by suspended solid particles in the flowing fluid in a vertical tube, *Hwahak Konghak* 27, 682–688 (1989).
- R. Zisselmar and O. Molerus, Investigation of solidliquid pipe flow with regard to turbulent modification, *Chem. Engng J.* 18, 233–239 (1979).
- B. S. Petukhov and L. I. Roizen, Generalized relationship for heat transfer in a turbulent flow of gas in tubes of annular section, *High Temp.* 2, 65–68 (1964).
- S. H. Köker Heat transfer characteristics of liquid-solid suspensions flowing turbulently upward in a vertical concentric annulus, M.Sc. thesis, Middle East Technical University, Ankara (1993).
- E. N. Sieder and G. E. Tate, Heat transfer and pressure drop of liquids in tubes, *Ind. Engng Chem.* 28, 1429–1435 (1936).
- J. W. Smith and J. C. Paradi, Heat transfer to settling slurries in vertical transport, J. Pipelines 3, 43-52 (1982).
- C. L. Tien, Heat transfer by a turbulently flowing fluidsolids mixture in a pipe, *J. Heat Transfer (Trans. ASME)* C 83, 183-188 (1961).
- C. A. Depew, Heat transfer to flowing gas-solids mixtures in a vertical circular duct, Ph.D. thesis, University of California, Berkeley, CA (1960).
- W. J. Danziger, Heat transfer to fluidized gas-solids mixtures in vertical transport, *Ind. Engng Chem. Process Design Dev.* 2, 269–276 (1963).
- T. Furuta, S. Tsujimoto, M. Okazaki and R. Toei, Concentration distribution of particles in solid-liquid twophase flow through vertical pipe, *Kagaku Kogaku Ronbunshu* 4, 605–615 (1978).
- T. A. Özbelge and T. G. Somer, Hydrodynamic and heat transfer characteristics of liquid-solid suspensions in horizontal turbulent pipe flow, *Chem. Engng J.* 38, 111– 122 (1988).